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VORTICITY GENERATION BY ASYMMETRIC ENERGY
DEPOSITION IN A GASEOUS MEDIUM

I. INTRODUCTION

Recent experiments by Greig et al.1- 5 have studied hut channels produced by lasers and electric

discharges in ambient air. Following expansion to pressure equilibrium, the hot channels cool with a

rate which is several orders of magnitude faster than that attributable to classical thermal conduction.

Since any reasonable estimate of background gas velocities falls far short of explaining the cooling rate.

we require a mechanism to convert curl-free fluid expansion, which does not mix, into persistent vorti-

city, which can. The importance of determining the mechanisms and scaling laws governing the

dynamics and cooling of such hot channels derives fiorn the application of discharge physics to other

areas, such as beam physics and the study of ritrogen fixatioa in the atmosphere by lightning. - In the

latter case. the cooling rate of the hot channel gas is critical to predicting the global production of nitro-

gen oxides.

In Section II of this paper we propcse a mechanism for the generation of persistent flows which

mix cold, ambient gas into the hot gaseous channels produced by one or more pulses of energy. The

mech..nism relies on deviations from cylindrical symmetry in energy deposition by a given pulse, and

we idectify three classes of asymmetry which appear to be physically significant. Section II also intro-

duces a convenient representation of the vorticity distribution in terms of one or more vortex filament
pairs. We use this representation in Section III to derive a formula for the mixing time scale ,

which characterizes the rate at which cool ambient air is entrained ;nto the hot channel. To estimate

* me~',we use dimensional analysis to derive an approximate formula for the expansion induced \.orticity.

Our estimate shows that the proposed mechanism causes mixing o cool background gas with the heated

channel interior on time scales which are orders of magnitude shorter than those charactcrizing molecu-

lar thermal conduction. Section IV provides a detailed theoretical analysis of the three classes of asym-

metry. The resulting formulae for the vorticity strength are considerably more accurate than that of

Section Ill. Section V presents the results of detailed two-dimensional simulations of sexeral sample

cases. These computations validate the qualitativc features predicted by the analytic model and permit

us to calibrate the analytic formulae accompanying the model. We have used our results to analyze

experimental data on the cooling of electric discharge channels.) Our comparisons have indicated good

agreement between predicted and observed mixing times.

Manuicrirt submitted April 30. I'O.



[I. MECHANISMS FOR CONVECTIVE COOLING

The symmetric expansion of a cylindrical channel, produced by a pulse of energy causes no con-

vective mixing per se. but asymmetries in energy deposition which are inherent in the pulse structure

or which occur relative to the local density distribution generate long-lived vortex filaments. The

sheared flow attending the motion and interaction of these filaments mixes cold background gas into

the heated channel at a rate which depends on the strength of the induced vorticity and thus ultimately

on the fluid-dynamic asymmetries. We can identify three generic types of asymmetries: (I) two-

dimensional asymmetries from pulse displacement off the axis of an existing hot channel. (2) two-

dimensional distortions of the pulse envelope from a circular cross section. and (3) three-dimensional

distortions (e.g., curvature) of the envelope, such as characterize a lightning or spark channel.

As the channel of the most recent pulse expands to pressure equilibrium, any deviations from

cylindrical symmetry will lead to asymmetries between the gradients of the pressure and density distri-

budons. The equation which describes the resulting vorticity distribution and evolution is

d+ 7 v - -•v + ( -7p x 17P)ip 2

where

-7 x v (2)

is the vorticity, v is the fluid velocity, p is the density, and P is the pressure. All of the variables are

iunctions of the position r and the time t. Following expansion of the channel to achieve pressure

equilibrium, significant residual vorticity exists. This vorticity is responsible for mixing ambient gas

with the hot channel gas. Here we should note that other mechanisms for generating residual vorticity

in the heated channel may exist. As the channel expands to pressure equilibrium, for example, the

Rayleigh-Taylor instability could grow significantly. The experimental data do not support this possibil-

ity, however.5 Another possibility is the rapid movemeit of the discharge current axis which could

result from magnetic forces present when the current is nonnegligible. This could, in turn, displace the

surrounding air sufficiently to produce some long-term mixing motion. We do not attempt to estimate

the magnitude of such phenomena in this paper.

Figures 1-3 depict the classes of asymmetry schematically and will form the basis for our notation

and calculations, as discussed in subsequent sections. While all three types will often occur simultane-

ously, we will treat them separately to isolate their respectivc characteristics. We have defined the

axis to be collinear with the channel axis (i.e., outward from the page to the reader) for cases I and 2.

For our analysis of three-dimensional distortions. we have chosen a section of the channel with
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moderate sinusoidal curvature relative to the length. The :-axis is collinear with the center of the mass

of the section. The displacement S0 represents the degree :f asymmetry which is present in a given

situation.

Figure 1 shows how we model the first asymmetry class, which is relevant to sequences of approx-

imately collinear pulses and to pulses with interior "hot spots." Our model assumes a preformed, hot,

low density channel in which the next pulse is propagating off center. In Fig. 2 we present the cross

section of the pulse as elliptical where the ellipticity is defined by the parameter X0. Residual vorticity

will be present whenever X0 is nonzero. Such a distortion of a pulse may occur in several ways: (1)

the envelope of the pulse undergoes smooth spatial oscillations, (2) the pulse is deposited in a region

with an azimuthally nonuniform local density distribution: or (3) the source of the pulse produces an

azimuthally nonuniform (though smooth) distribution of energy. Figure 3 shows a simple model of the

last asymmetry class, which includes all pulses with a curved axis. Such curved discharges occur both

in laboratory discharges and in lightning.5 We have found that all three types of asymmetry will pro-

duce a sizable nonzero value for : which will cause mixing in the (r, 0) plane. In the ase ot three-

dimensional distortions, f9 will also be nonnegligible; this resul's in mixing in the (r, z) plane.

Il. MIXING TIME SCALE

A. Vortex Filament Representation

We may represent the residual vorticity distribution in terms of one or more vortex filament pairs

of strengtih ± W, where the index i labels the asymmetry class and a denotes z or 0. The quantity K,,

is the integral of the vorticity over the domain containing a given filament. F'qr example, in the case of

a pulse which is noncollinear with a preformed hot channel (asymmetry type 1) we have the (x, y) flow

pattern depicted in Fig. 4. These flows are equivalent to those of a single vortex filament pair having

strengths of =:1-j. and respective locations ( , ±% ). The strength WI: is given by the integral of the

vorticity over the upper half plane. i.e.,

Wj:(7)- y tv f f: (x, y, r (3)

and the coordinates are

f d dxx (x,.
Tj:( 

7) 0 
(4 )
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and

S t f v xy(

The quantity r is the time interval over which vorticity generation is completed and is thus approxi-

mately the time required for the hot channel gas to expand to pressure equilibrium. Defining t - 0 to

be the time at which the discharge is initiated, we may integrate Eq. (1) over the interval (0. r) to

obtain the vorticity distribution f: (x. y, r).

Figure 2 shows that the elliptical channel vill have two associated vortex filament pairs. Here the

domain of integration in Eqs. (3)-(5) will ':e the quarter plane and we will use cylindrical coordinates.

For the curved channel section in Fig. 3, we wi!! again use cylindrical coordinates. The integral for Wj:

will cover the upper half plane as in Eqs. (3)-(5). however, unlike class one, W3: will vary along the

channel axis. To obtain W we will integrate over half a wavelength in our simple model of a

sinusoidally curved channel. Because K will, in general, vary with 0, we may then perform an azimu-

thal integral (0O [0, rI) to obtain a total longitudinal mixing strength.

B. Derivation of Mixing Time Scale

In order to derive an equation for the time scale of the mixing of cool ambient gas with the hot

channel gas, we must first review the experimental observations.t - 5 Soon after the deposition of energy

(=300 - 600 JI/m) by an electric discharge or laser pulse, the hot channel expands, producing a shock

wave. Within 100 Ms, the shock has decoupled from the channel, which has reached pressure equili-

brium and ceased to expand. At that point, the channel boundaries are smooth. However after another

100 us, the edges of the channel have become distorted. and the channel has started to expand and
cool through entrainment of the surrounding air. By = I ms. small scale (turbulent) structure is evi-

dent and the channel has grown considerably. We attribute the initial disruption of the channel and the

entrainment of ambient air to the convective motion generated by the mechanism of Eq. (1). To deter-

mine the mixing time scale, therefore, we will treat this large scale structure separately from the smaller

scale motion observed as the channel cools. An understanding of the development of the latter flow

structure would, of course. be necessary for an accurate description of the dynamics of the fluid inside

the channel.

For simplicity we assume that the asymmetry induced flow field may be represented approximately

as two compact vortex filaments of strength ±:1 at ±3, as in Fig. 4; thus we treat each vortex filament

pair separately. This is in fact the situation for E. in the case of off center beam propagation. The

azimuthal velocity induced by each filament decays as /r away from the vortex center. The velocity of

4
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the fluid along the symmetry plane is the sum of flows induced by each vortex separately. Figure 4 is a

schematic of the situation with a sketch of the variation of the fluid flow velocity along the x-axis. This

velocity is given by

v,(x, 0)-. Ky (6)
" +

The filaments are migrating in the same direction at a slower velocity,

vx. 41r ' (7)

which we will ignore in the following integral estimates. This overall migration velocity can be impor-

tant when a series of pulses is being considered. In that case a quasi-steady state develops in which the

systematic migration of the integrated vorticity entrains cold fluid stochastically at the edges of the hot

channel.

To estimate the mixing time, we use Eq. (6) to calculate the time required for a fluid element

starting at x - -So to reach x - So, ignoring the effects of small scale turbulence. The equation of

motion for this element is

dr - 0(x ) = Y(8)

dt 7r (x2  2) (

which can be integrated to give

d r- Ix - 7r f Xa + _2f. (9)

The quadrature can be performed and gives the following mixing time estimate:

rmix 21r So (10a)

where the vortex strength K is given by Eq. (3) and the "average" displacement of this vorticity above

the y - 0 plane is given formally by Eq. (5). Recently we have found that 7Mx has a simpler and

perhaps more realistic interpretation. If we define V0 to be the volume of the channel just after pres-

sure equilibrium. mix is approximately the time interval required for a volume V0 of cool ambient air

to mix with the hot channel gas. For an ideal gas, therefore. rmx is approximately the time in which

the channel volume doubles.6

We note in Fig. 2 that. fcr the case of the elliptical channel (asymmetry class 2). to vortex

filament pairs are generated and the flow is inward along the semimajor axes, a,, and outward along the
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semiminor axes, b,. A representative -mi, (and volume doubling time) can then be taken as the sum

of the time intervals required for a fluid element to traverse half the ellipse along ae and be respec-

tively. For these times and each vortex filament pair, the derivation of Eq. (10a) will carry over

directly. For the inward flow along the semimajor axis. ae, we integrate from 0 to ae for the fluid parti-

cle path rather than -So to So. In Fig. 2, the vortex filament pair most influencing this motion is that

appearing on the right side of the minor axis. The displacement of these filaments is 2.T = 2be. This

gives us

7 a' +a2, Iae a7mxaI _ LT  + 7r e---- +b;. 10~b)

Similarly, for a fluid element traveling along the semiminor axis from y - 0 to be, the vortex filaments

most influencing the motion are the two in the upper half plane and are therefore displaced by

2Tc = 2a: so we have

mIX(b) - W Ia. e 3 + a-I (10c)

Our representative time scale would then be the sum of Eqs. (10b) and (10c),

rmIx(2) - rmx(a - mtxb) j10d)

The case of three-dimensional distortions is more complex than the others, since two components

(K3: and K30) of the residual vorticity are nonnegligible and are functions of : and 0, respectively. From

Fig. 3, we see that for a given value of :, W: is computed by assuming that the density distribution is

offset from the pressure distribution, as for asymmetry class I. The equation for Tm,,,, is therefore

identical to Eq. (10a) with K as a function of :. We will find that the dependence on : leads to localiza-

tion of the vorticity at : X 0. x/2, and ,, in contrast to the case of off center beam propagation. Simi-

larly we will find that !K_,Q1 is largest when 0 - 0* or 180', so that we can compute 7mix,,Q as the time

for a fluid element to travel half a wavelength (for a sinusoidally curved channel) under the influence

of vortex filaments of strength IK30(0°)1 - I;3,(1800)1. With a separation 2 2RI. where R, is the

radius of the channel cross section at pressure equilibrium we obtain

2R X L(0)I -i-+ Rrj (l0e)
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While Eqs. (1Oa) and lOe) will give us an estimate of the mixing rate for asymmetry class three.

we can define a channel doubling time only by computing the flux of ambient air into the channel

under the influence of the total velocity field defined by the strengths K3:(z) and K 3 ,(0).

C. Estimates of r.ij from Dimensional Analysis

We may now use Eq. (10a) to estimate "mx for the first asymmetry class, in which a pulse is not

collinear with a preformed hot channel. To do so, we require values for K and T. The remainder of

this paper deals with the analytic calculation and numerical calibration of expressions for K. We will

find a reasonable value for 7 from the numerical simulation of sample problems. A simple dimensional

analysis allows us to make at least crude estimates rather directly for the example of two successive.

noncollinear pulses. A number of size scales enter the problem: So, the radius of the channel c! A

by the first pulse- the characteristic scale lengths for the pressure and density gradients, and the al

and final radii R) and R of the second, displaced channel being formed. Fortunately most of e

scales are either unimportant or expressible in terms of So. If the first and second pulse have s

initial overpressures, R I and So will be roughly equal and R0 will be a modest fraction of R _r

numerical simulations iSection V) support the approximate equality of So and R 1.

We expect other simplifications. Whether a shock expansion or an adiabatic expansion is being

driven by energy deposition, the larger the pressure gradient the smaller the time over which it acts.

Thus the integrated vorticity is relatively insensitive to the shock thickness. Similarly, the density gra-

dient is integrated over space so the inner and outer densities 1P0 and 0-) enter. but the scale length

of the transition region can be neglected. We expect and will in fact show that the maximum vorticitv

generation occurs when X, = So. Thus there are no small parameters arising as ratios of characteristic

lengths unless we consider exceltionally tightly focused pulses, in which case R0 << R, = SO, or only

slight departures from the symmetric superposition of the pulses, in which case V,) << S,.

The integrated vorticity R has units of cm2/sec, a length times a velocity or a characteristic time

multiplied by a velocity squared. The characteristic velocity will be the expansion velocity. When the

energy deposition is fast and the pulses are strong, this velocity is a characteristic sound speed c. The

characteristic time is the expansion duration (if the energy deposition is slow) or the sonic transit time

S,>Ic,. Thus we expect

K]: cS So F1, (Ill

where FI: is a dimensionless form factor containing geometric effects. detailed hydrodynamic interac-

tions. and information about the channel and beam profiles. Cancellation effects. leaving2 V t as the
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dominant contribution to the vorticity source team, generally reduce F,: somewhat below unity. We

will demonstrate this in Section IV.

If we aisume that == 0.8S,), Eq. (10) for the mixing time becomes

7M, - 7.9S(y IcF:). (12)

For a strong pulse which heats the gas appreciably on passage. we shall assume Fj: 0.5 Taking

5 x 10" cm/s as a generic %alue for c, and choosing So = I cm gives r,, = 300 s. This time scale is

at least three orders of magnitude shorter than that of classicial thermal conduction?

If we consider only the large scale convective flows, this 300 gs "mixing time" from the dimen-

sional analysis estimate of Eq. (10a) is the time for cold material from one side of a hot channel to

cross the chainel and reach the other side. Because of the presence of small scale turbulence and other

perturbations which can affect the interaction of the vortex filaments, the fluid particles will be likely to

follow a more random path inside the channel. In addition. true mixing of hot and cold fluid will prob-

ably take somewhat longer because one or two rotations of the vortices will be required to entrain and

smear in an appreciable amount of the cooler fluid. This "mixing" time. however best defined, is clearly

important when comparable to or less than the time interval between pulses.

In the next section, we perform an integration of the vorticity source term in Eq. (1) to improve

on Eqs. (11) and (12), our dimensional analysis estimates. Using a few reasonable assumptions. we

obtain a quadrature for the integrated vorticity K-,,, which will display the various nondimensional

dependences of the form factor F,.

IV. APPROXIMATE VORTICITY INTEGRALS

Equation (3) defines the residual vortex strength following expansion to pressure equilibrium

I > 7) and will be evaluated analytically to replace Eq. (11) in the mixing time estimates. Eqs. (10).

First. however, we must integrate Eq. (1) over the time interval (0. 7). We begin by stating several

assumptions which will permit us to perform these integrals.

We model the deposition of energy as instantaneous and use pressure pulses of finite size with in

appropriate radial profile and a total energy which is equivalent to that of the laser pulses or electric

discharges. This is a reasonable assumption for the experiments of Greig et al.,' 5 in which the

discharges were much shorter in duration than the expansion times of the hot channels. Our model

deposits the energy as internal energy only, and we. therefore, do not consider relaxation of excited

molecular and atomic states. The presence of long-lived states will slow expansion of the channel.

8
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however, our analytic model becomes more accurate in this case, as discussed below. The variable

R I will denote the radius of an expanding cylinder of hot gas which is produced by the latest pulse.

Note that, according to Section IlI.B. R (0) - R,) and R Ir) - R,. To represent the flow field of the

expanding channel, we assume that the flow in the outside region (r < R I)) behaves incompressibly

and th. :nside. beam-heated region expands uniformly. Thus

rU(t)/RI t) if r < R (t)

v,(r, t) - (13)
L'(itI Rit)/r ifr > R(tI

specifies the flow everywhere as a function of the heated region radius R Ct) and velocity L',t) R (t).

This flow has a uniform but time varying divergence inside the heated region and zero divergence out-

side. In reality the fluid inside the just-heated channel will give up energy to the cold surrounding fluid

via shocks, and a fraction of the pulse-deposited energy will even escape to infinity as an acoustic wave.

The smooth shape of the expanded channels observed from 1 D hole-boring calculations" and the com-

putational and experimental 5 result that most of the deposited energy stays close to the original pulse

deposition region support the approximations implied by using the flow field. Eq. (13). We note that

Eq. 113) becomes a better representation as the rate of energy deposition decreases.

As we will soon show more explicitly, the important feature of vorticity generation is the radial

distance which each fluid element moves. Pressure gradients arising from accelerations of a fluid ele-

ment do not really contribute to vorticity in the present context. Because the fluid elements begin and

end their expansion-induced displacement at rest. the average acceleration is zero. The v - Vv vorticity

source term has the same sign throughout the expansion and consequently contributes more strongly to

the integrated vorticity.

Because our velocity field during expansion is radial and varies only with r. the coupling term

v in Eq. () is initially negligible. Further. the maximum vbrtex induced flow speed which resides

in the system is much smaller than the maximum expansion speed. This term, therefore remains small

relative to the other terms throughout the expansion and may be neglected. To evaluate the pressure

gradient in the source term we may use the flow field, Eq. (13). in the equation of motion to obtain

Ir-(U/R) + r /R 2  if r < R(r)
_ _ P dvr dt (14)

P dt |I d(UR) U2R 2/r 3  ifr > R (14
r dt

9
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Notice that we assume that the acceleration in the radial direction has values strictly appropriate

only when feedback of the asymmetric density gradients on the driving expansion flow are small. The

model appears to work quite well for large density variations as well, a result that is understandable in

hindsight. The maximum vortex-induced flow speed wl"-h resides in the system is much smaller than

the maximum expansion speed. Further. the vorticity is generated essentially instantaneously relative

to the mixing timescale rm . Thus the generation term can be calculated assuming that the asymmetric

density gradients do not change the expansion-driven pressure gradients and that the vorticity which

develops does not affect the density gradients during the relatively brief expansion.

Since the pressure gradients are assumed to be radial, the radial vorticity component will be negli-

gible and we need to evaluate only the azimuthal and axial gradients of the density. Our representation

of the density profile is

p Is. t) -p, exp f-In (p./'Po) g (s, SO, 1)] (15)

where g (0, S,), 0) - 1: g(o. S,, 0) - 0: s is a displacement vector: and So is a characteristic scale

length defined in Figs. 1-3. Normally g(s, So, t) is a function of the ratio s/S 0 . In the subsections

below, we will evaluate K,, for the three general asymmetry classes. For brevity we will discuss the off

center beam propagation case in detail and shorten the presentation for the other two cases.

A. Off Center Beam Propagation

As indicated by Fig. 1. the case of off center beam propagation is two-dimensional, and the dom-

inant contribution is the passage of the shock across the preformed hot channel, which is assumed to be

cylindrical. Thus we may use the flow field at and outside of the boundary of the expanding chanrel

(r > R (0). Because the problem is two-dimensional, v, p, and P do not vary with :, and for this rea-

son. only f: is nonzero. Noting that the flow field in the outer region is incompressible and using Eqs.

(1), (14), and (15), we have for

df~ _ 0 if r < R (t)
d p ag(s) (UR) 2  1 d 1R) ifr > Rt6
d In P0) 0  r 4  r2 d

Because we assume that the vorticity does not affect the density gradients during the relatively

brief expansion. g (s) does not vary with time in our model, and, therefore. describes the channel prior

to deposition of the latest pulse. Notice that we have suppressed St as an argument of g s). We will

take S, into account when evaluating form factors later in this section. We may now calculate K1: by

10



using Eq. (16) in Eq. (3). Since we are currently using Eulerian variables, we may reverse the order of

the time ana spatial integra:;cns to obtain

- In (p./po)J, dt dO f dr (17)

(UR) 2  1 d(UR)

We now change to the Lagrangian variables (r,), 0O) where

r - rt) - ,,o + R 2 ) - R

- o. (18)

This gives us

r dr = ro dro, (19)

and r(t) is the instantaneous radial position of a fluid element initially at r(0) r0 . In terms of r,

the radial density variable s becomes

s = (Xo + ro 2XOro cos I (20)

and the integral in Eq. (17) can be performed without approximation. This gives us

0 g Jg(ro + XO) - g(X° - rO), rO < X O (

dO a - Ig(ro + Xo) - gr- Xo) , ro > Xo (21)

and Eq. (17) becomes

KI:(-) - In tO dt (22)

x i r(t) r2 (i) dt

Y f dr r(UR) 2  d(UR)

- !L g (X,- r°) r 2  dt

r2() r(t) dt

-g di

. .. . .II ' - ll T .. .I ", . .. . .



Notice that the expression in Eq. (22) is long because of the requirement that the radial variable s

be positive or zero. Equation (21) is necessary, for instance, when g(s. So) is a square well

I. , S < SO

g(s, So) -  0, s > S' , 23,

which is not defined for negative s. However, if g s, So) is an even function of s, such as a Gaussian,

then Eq. (21) represents an irrelevant distinction and Eq. (22) shortens considerably.

The integral in Eq. (22) is difficult to perform even if R (M for our particular case is known, and

further approximations must be made to get a usable analytic result. The approximation most useful is

to evaluate the integrand at a specific time. If we assume that the initial and final states of the expan-

sion are at rest, we have U(0) - U(r) - 0. The expansion flux R 0)U(t) will then peak at a time

0< t,,, < r. We will evaluate the integrand in terms of t,,,. If the function R (t)Ut(r) is approximately

symmetric about t - t,,,, a reasonable approximation for the term L'2 (t)R2 (t in Eq. (22) would be half

the maximum value, i.e.,

U2 (t)R 2(t) U2 (t,,)R 2 (t,),'2 = U,R 2/2. (24)

We also replace r(t) by r,,, - -rj + R, - R. Because r,, does not vary with time and because
d(UR )

the system is at rest at t = 0 and I - 7, the term proportional to d- integrates to zero. Thisdt

term. therefore, corresponds to a transient in the vorticity during the expansion to pressure equili-

brium. As the time approaches t - 7. we expect the vorticity strength to approach a value which will

be approximately constant for [ > 7. With the above simplifications, we may perform the time

integration of Eq. (22) to obtain

2, pU R(r + X,)
I: (n) (25)

2 IrJ, R 2- Rr

fR, Rg(Xo - r) Rmg(ro - Xo)

- " ,r~r 0 (r% -- R, R,) 2 f }
(r~ m,+R0 -Rrr(r2 + R 2 - 2)2

for the residual vorticity. We may approximate the expansion time r by

- 2(R 1 - R,))/ (26)

where, as before, R0 - R (0) and R1 - R (r). In Eq. (26). we use Udn/ 2 to estimate the average velo-

city of expansion.
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Next we write the integral in terms of three ncndimensional parameters

a = R,, R.,, < 1.

b E R,./S" 1, (27)

c Xa/S 1.z

Letting the integration variable be 77 -- r/R, yields

:<, U2- n g(So 1[b -+ c+ )K' ( In d ( T) a2)

128)

_f b g(So[c - vTb]) d77 g(S4[,qb - cll
d~ ~ T 2l) "-v - a2:)"  - + - a2)2 "

If the remaining composite integral is identified as a three parameter form factor ft z(a. b, c) with

values of order unity, the very useful improvement on the dimensional approximation (Eq. (ID) is

obtained:

t r) - (U.'jr/2) In (pipo0 fji.a, b. c)

U,(RI - Ro) In (poipo)J1':(a, b, c). (29)

Here the form factor fl: is generally less than 1/2. The sign off, indicates the direction of flow in the

(x, Y) plane-counterclockwise or clockwise.

We will now include the explicit dependence of the function g (s. SO) upon So, usually this occurs

as the ratio s/So. In this case, the multiplicative So in Eq. (28) will cancel with that in the denomina-

tor. For this reason, the form factor f.: in Eq. (29) depends only on the ratios a, b, and c. and not

explicitly on So. and we have

:(fg(b + 0 g(c - -b)
( I + -17 2 a 2) + 7? 2 2- f2 ) 2  '

-,d g 1 +'02- 0) (30)~Cb 7 T (I +7 2 - a2

The general integral form factor, Eq. (30), can be evaluated numerically for any reasonable profile

g (s/So). Figure 5 shows plots of fI: versus c, the measure of channel separation, for several values of

13



a at b - 0.7 and for several values of b at a 0.6. These values are close to the actual initial condi-

tions for the detailed calculation of the next section. In this figure the super-Gaussian density profile

was used,

gsG (s/So) - exp (- s2/S ) (31)

and the integrations were performed using a numerical quadrature algorithm. We have also evaluated

11: for a Bennett profile,

g8 ((s1S+) -in I - / In (plpo)' (32)
p_ ( I + S21S~ )2

the results appear in Fig. 6. In Eq. (32), the "Bennett radius" is equal to So. In the case of a square

well density discontinuity at s - So, Eq. (23). the integral can be performed analytically to give

(a. b1 C)- b2 b- (33)
2. a. b. c)--. al (I - c) 2 + b-(l-a 2)

for c > I - - ab. This is the case when the second pulse is wholly outside the channel formed by the

first pulse. As c approaches o, f' decreases as -1/c 3: so pulse channels separated by more than 3

radii interact only weakly.

When the channels are closer, we have c < I + ab . and the channels overlap somewhat. As

long as c > I-ab there is still part of the second channel of initial radius RO outside the cylinder

s - So. For this region of values, I - ab < c < 1 + ab, we have

J17(a, b, c) - b1+ 21 (34)
(+c)2, b -1134

Equation (34) agrees with Eq. (33) at the interfacial separation c - I + ab.

There is a third region where the initial radius of the second channel lies wholly within the first,

i.e., c ( I - ab. Then .fj (a.b,c) satisfies Eq. (33) again. In the intermediate region

I - ab cI I + ab, Jf takes on its lowest negative value at the exterior touching point c - 1 + ab.

For larger values of c the magnitude I f . decreases and for smaller values I decreases monotoni-

cally to zero at c - 0. This lowest negative value is

- - -2(1 + ab)i If. .,I: I max -- (35)
ffPtini max (4 + 4ab + 0

When a -b 2 - 1/2. lj ax 6/13, which is close to the values in Figs. 5 and 6 for .fl and ..

respectively.

14



Also of interest is the slope 1 at c - 0, where the pulses are concentric and no vorticity genera-Aec

tion is expected.

af [2b- -2b)

ac 1- 0  [1 -r b2(l - a2 )]2 ' (36)

which is nonzero and large. Thus even modest nonconcentricity leads to appreciable vorticity and mix-

ing. Similar behavior is observed in the two smooth profiles considered a! well. Figure 7 compares
J19:. J*s], and ]l for a - b - 1/-/2 to demonstrate the similarity of the vorticity generation form fac-

tors regardless of the profile. This relative profile insensitivity arises because K.: is an integral quantity,

the total upper half plane circulation.

Returning to our integrated vorticity estimate of Eq. (29) with a maximum form factor of 6/13,

and U., = c, we have

i1 1I1max 7 c, (R I - R 0) In V-J
Using Eq. (8) and assuming. = R I - RO gives an estimate for the maximum velocity on the x-axis:

Ivxrlmax == 6 In ~(38)137r PO0

Under optimum conditions the velocity between the vortex filaments approaches a quarter of the sound

speed in the surrounding fluid. When the expansion is subsonic throughout (where this analysis ought
to be most accurate). c, in Eq. (38) should be replaced by the appropriately averaged expansion velocity

U.,.

Using Eq. (IOa) for the mixing time with F 0.8S o = RI - Ro and WL: Eq. (37) above gives

(rmx)mtn 6.87S (39)

With c, = 5 x 10' cm/s. In (p-lpo) = 2.5, and So - 1.0 cm, the fastest mixing time is about 170 ts.

This estimated fastest mixing time is within a factor of two of the dimensional estimate. In any particu-
lar system the integral of Eq. (30) can be performed numerically and the resulting form factor substi-

tuted into Eq. (29) for the integrated vorticity.

The sign of K-: is negative for the configuration of Fig. I where the second pulse is centered to
the left of the original channel. This means that the jet of colder gas across the original channel starts
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on the side opposite to the displaced second pulse and rushes toward the newly heated region. On aver-J

age the old channel moves toward the new channel. This average motion does not imply mixing but

the spatial behavior of the flow from the vortex filament pair, as will be seen in the simulations of Sec-

tion V (Fig. 16). effectively bisects the composite hot channel with a cold jet. The result is two smaller

channels above and below the original symmetry plane in which the vortex filaments are now centered.

A third pulse located at Y - 0 between the two modified channels will cause each of these smaller

channels to bifurcate again with fluid jets from the top of the upper channels and the bottom of the

channel impinging on the third expanding channel from above and below.

B. Two-Dimensional Distortion (Elliptical Channel)

The above results are readily generalizable to the other symmetry classes, and we. therefore, will

not evaluate the form factors in detail as we have done above. To illustrate the effect of smooth distor-

tions of a pulse (envelope) from a circular cross section, we will treat the expansion of an elliptical

pulse. By smooth distortions, we mean in this example that all of the pressure and density Lontours of

the pulse will be elliptical in shape. For a Bennett profile, we may express this as

(40

In Eq. '40), R2 - a~, where a, and b, are the semimajor and semiminor axes of the elliptical

envelope of the pulse, and j3-a~/b,

Initially the pressure and density gradients will be approximately parallel. As the channel

expands, the density distribution will retain an elliptical shape while the pressure distribution and the

flow pattern will approach radial symmetry. Consequently the source term in Eq. (1) will be nonzero

when integrated over the expansion period -,. In contrast to the .otl center beam propagation case. the

largest contribution to the vorticity comes from the flows in the interior of the expanding channel

boundary (r (t I)). since the density is relatively uniform outside. Our derivation will assume the

co~nfig~uration of Fig. 2, where the circle represents the pressure distribution and the ellipse forms the

enveiope of the density distribution. Since we will not account for the noncylindrical shape of the pres-

sure distribution at early times, Eq. ( 13) provides an adequate description of the flow field for this

model. The problem is two-dimensional, as in the case of the first asymmetry class-. so only ~.is
nonzero. The divergence of the flow velocity is nonzero, i.e..

2 U (41)
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Because the vorticity generating flows are, therefort, compressible, the integration of Eq. (1) is ,implest

if we use Lagrangian variables from the beginning. Tbe density of a fluid element will vary it., .'rsely

with its volume over time, as determined by Eq. (41). We may express the average reduction ;r den-

sity as the channel expands by the equation8

p r, t) = p(r, 0)R,/R 2 (t)

where r now varies with time, R (t) is the boundary of the outward flow as in Eq. (13) and R0 - R )1

Using Eq. (42) and Eq. (15) with r - 0. we find that, to a very good approximation.

- - Inp(r, 0 - - In (p,/p)1 g (r, 0). (43)

As in Section IVA, we have suppressed the dependence on So and, in this case X 0. to shorten our

notation. Thus the density distribution at very early times dominates the density dependence of the

source term. With Eqs. (14 and 41-43). Eq. (1) becomes

+ f **: - ln1  a-L,(r0)1 1- -L4)
dt R P0 a r. d R R

We may now integrate Eq. (44) over the time interval (0. 7). As in the case of the density, the vorti-

city present in a fluid element at time r < - decreases with subsequent expansion by the factor

R'()/R">-). This effect is associated with the nonzero divergence of the velocity and thus accounts

for the second term on the left hand side of Eq. (44).

Our Lagrangian variables are r) and 0(-r) - 0 (constant in time), whicn give the position of a

fluid element at ,ime tr. From Eq. (13) we find that rI-) and r(0) = r,) are related by

r(r)Ro (45)

When we express the initial density distribution in terms of r(7), the vorticity at time 7 is the integral

of the source term in Eq. (44) over the time interval (0, r). reduced by the factor R(t)/R2 (r7) to

account for the nonzero divergence of the velocity. This gives us

E.(.O ) In gj r()R .,4 I , f

In dt LR - (46)

R P a17 )
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Foilowing the development of Section A, we note that the term d(UR )/dt integrates to zero, and

we apnroximate the remaining portion of the integral in terms of t - t,., when the expansion flux

U () R Ireaches a maximum. This gives us

O A ) U.' r (p- 0  r (r) Ro 472R 2() In g R(r)

Comparing ti.s with the results of Sectior A, we see that the form ofK. will be quite similar in the two

cases.

We may now integrate Eq. (47) over the quarter plane, which contains a single vortex filament, as

shown in Fig. 2. The integral is

U2Ttp,,i,,~jl.f r -1 rR-0 ,0

W1. -- n l-£  dOldr rI-ngI----. (48)
.2R 2  POjQ R

where r and R are functions of -_ We may perform the 9 integral and use Eq. (45) to transform from

r (r) to T rWRo as an integration variable. If we now include the explicit dependence on X) and S,

we obtain

_ U,, 1r fp_0K - In - f 2:(a, b, c) (49)
2 PO I I

U,( RO) In [ -2: (a. b, c),

where a. b, and c are given by Eq. (27). The form factor is

f2 (a, b. c) - dY) g(ab), -- , c) - g(abn, 0, c). (50)

For the initial effective radius of the flow field, we use R - abe, in which a, and be are the semima-

jor and semiminor axes of the pressure pulse.

We may calculate the form factor f2: for a super-Gaussian density distribution,

ro X0_ O r0 1 ( 51 )'
so so e s--o X

I + cos 20
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Inserting Eq. (51) into Eq. (50). we have

12: 2X0 So (52)R 0

For Sj) =- Ro and X( = 1/2 S,. f,.: - 1, and our form factor is a factor of -2 larger than for asym-

metry class one. However, since we did not account for the approximate alignment of the pressure and

density at early times, we might expect 1.2. as given by Eq. (50), to be too large by a similar factor.

Thus, we would expect a more exact calculation of [f2.I to yield values similar to those of 1.

C. Three-Dimensional Distortions

A pulse may also have an axis which is curved or kinked. This curvature may be the result of a

perturbation in the envelope of the pulse, as in the case of a deformable solid, or alternatively, could

occur if the deposition of energy along the axis is nonuniform. Our current treatment assumes the

former case, in which the pulse is deformed smoothly, and we will consequently parallel Section IV.B in

our general approach. Figure 3 shows that we choose the :-axis to coincide with the center of mass of

the pulse. This causes the density to vary as a function of : and 0, and both : and 6, are nonneligible.

We will discuss each component separately. taking f: first.

C.1 Derivation oj K-3:

The assumptions of Section IV.B apply directly to the derivation of K-.. since the interior flows are

again responsible for the vorticity generation. Figure 3 indicates that the flow is radial from the : axis,

and R,. the radius of the expansion wave, is >, UKo S ,, where X, is the displacement of the channel

axis from the :-axis. By convention X0 will be positive for a displacement of the channel to the right of

the :-axis. The situation resembles the first asymmetry class, off-center beam propagation, although X0

oscillates between positive and negative values as : changes. As in Section IV.B, we initially suppress

z. X0, and S,) in our argument list for g(s. 0. Carrying over Eqs. (41)-(47). we find that

W"  d d (Z , In rR 0  (53)K.,.,t_._. In p  ' l[", Ojo r r R 53

2R' pt 2

in which r and R are functions of 7. Because of the similarity to asymmetry class one, we see that the

radial variable s is given by Eq. (20) with XK a function :, and the 0 integral is given by Eq. (21). We

may now transform our radial integration variable from r(r) to 17 - r /Ro. as was done in solving Eq.

(48) for asymmetry class two. This gives us
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r7

I,,,jr in ./J3:(a, b, c. :) (54)

where the dependence on Xo(:) and So is now explicitly included through the ratios a. b. and c, which

are defined in Eq. (27). With tht' assumption that g(s, SO) - g(siSo), the form factor is

fJza, b, c, ) = dr)7) qg (abi7 + c, fJ dr) -,1 g(c - abel, : 5

nod rl -n g (ab-q -c, z).

As an example let us use a Gaussian function for g(s/So), Eq. (31), where s is given by Eq. (20)

with

Xo(z) - h cos (2frz/;X) (56)

in the coordinate system defined by Fig. 3. Equation (55) gives us

f3.- - X (-)S° (57)RO

Note the similarity with our calculation for fz. (Eq. (52)). We also pointed out earlier in this subsec-

tion and in Fig. 3 that, in our model for the flow field, R0 < IX0I + So, and, therefore, suggest using

h + So as an estimate for RO. If h == So, then the average magnitude of Xo is :2/3 So and we find

that the average I.f3:I is ==0.3. As for the elliptical channel case, the pressure will not be symmetric

about the z-axis at early times, and our values for f3: I may be somewhat high. Note that, by Eq. (56),

most of the vorticity is generated at the ends and center of the channel section.

C.2. Derivation of W30

To solve for the 0 component of the vortex filament strength. we return to Eq. (1). Following

the line of reasoning which lead to Eq. (44), we find that

dt eU = 1-MIn rk t +f-1 (58)
~~~:di R ~~o 1 : i ; R

Again the density distribution at early times determines the vorticity through the derivative of

g(s. So, 0) in Eq. (58). Proceeding as in subsections IV.B and CA. we use Lagrangian variables r(t),

0, and z, and integrate over time first to obtain

IngI 1Po fr )R .11 di I 1 .1L- (9R2 (r) -g s - dOr(t) -() (59)

20

l ........................ " ._ ... ., '" " ...



As in the case of Eq. (22), we simplify our integral by replacing r(t) with the value of r at a specific

time: here we use r(r), which is the most convenient choice for the spatial integral below. Again we

note that d(UR)/dt integrates to zero. and we approximate the remaining portion of the integral in

terms of t - r,,,. Thus we obtain

C,,(r. O, : -, ) In r(r) .,s[r (r' , 1 ]. (60)2R 2(7r)6 R(.

We now integrate Eq. (60) over the region {rE(O, o), :,E(0, X/2)), which contains vorticity of

one sign. in analogy to the two-dimensional cases. The integral is

- I P_ If dr r d: - - r7s[) , ]. (61)
2R 2(7) P

We now perform the :integral and use Eq. (45) to transform r(r) to 7j = ro/Ro as an integration vari-

able. Including the explicit dependence on X 0 and S0 through the ratios rc/SO and XO/So as before, we

have

K3- -- T In PO (a. b. c. 0) (62)

where a. b, and c are defined by Eq. (27) and the form factor is

J'30 (a, b, c, 0) d ) n Ig(abr, 9. X/2, c) - g(ab'o, 9, 0, c) .63)

For the initial radius R 0 , we may again use 11g0[ + So. If g(s,'S,)) is given by Eqs. (20). (31). and (56).

we find that the form factor is

A,- V7 hO coso ex(p [ in P (64)

Equation (64) shows that 1 3.1 is maximum on the x-axis (9 = 0. -r). This is analogous to the situa-

tion for f.f: which is determined primarily by 0, x/2. Notice also that the maximum values of f".

and i.*"lI agree at z - 0, k/2 and 0 =- 0. r, respectively, as they should because vorticity is divergence

free.

D. Nonuniform Deposition of Energy

In asymmetry classes two and three (sections IV.B and C). we assumed that the pulse was dis-

torted smoothly, similar to changes in shape of a deformable solid. Vorticity generation also takes place
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when energy deposition is nonuniform within the zn.elope of a pulse. The simplest model of this

situation would be that of .V simultaneous small pulsc.; within the enveloe of the actual pulse and with

the same integrated (total) energy as the actual pulse. Ito estimate the amount of vorticity generated in

this model, we may extrapolate the results of Section l% A for a pulse which is misaligned relative to a

preformed, hot channel. Each of the .V pulses will prodce a hot channel through which the expanding

shock waves produced by the other N - I pulses will :iass. Taken separately, each pair of pulses.

labeled by k and I, would produce two pairs of vorte, filaments; Eq. (29) gives the approximate

strength of each filament K ki* Given that V is a small num-ber and the pulses are sufficiently close, we

remember from Section IV.A that the strength Kk' will vary slowly with the displacement of pulses k

and I. Thus we have 1K- = K (constant). Since there are V(.V - 1)/2 pairs of pulses, we find that

convective mixing of characteristic strength V(,V - I) K occurs when a small number ,V of simultane-

ous pulses are deposited close together, When the displacements of the pulses arc greater than the

radius of the channel which one of the pulses would produce separately (i.e., X~l > Rik == R1I), the

form factor in Eq. (29) decreases rapidly with increasing XO'. Thus for a large number of pulses or for

pulses which do not overlap, only "nearest neighbors" will interact to r-oduce significant vorticity. The

number .V of nearest neighbors for each pulse will depend on geometry, and the resultant mixing

strength will be proportional to V ,V*K. We expect that the pulse sizes will determine the minimum

scale of the turbulent structure observed in the composite channel produced by the collection of pulses.

We will present further discussion of this higher order application of the theory and a comparison with

relevant experimental data in a future article.

V. DETAILED NUMERICAL SIMULATIONS

We have performed preliminary detailed numerical simulations of this problem using the

FAST2D'3'' computer code in order to validate and calibrate the approximate analytic model developed

above. The FAST2D code solves the two-dimensional equations for convervation of mass, momen-

tum, and energy, employing the techniques of flux-corrected transport (FCT) and time step splitting.

In addition to accounting for shocks properly, which the theoretical model does not do, the simulations

are capable of describing the late-time motions and profiles as modified by the induced vorticity Thus

the various elements of the mixing-time approximations, and their significance. can be evaluated using

detailed calculations of representative problems. In this section we will discuss simulations of examples

of the two-dimensional asymmetry classes (I and 2). The case of off center pulse propagation will

receive more attention, since the vorticity strength will usually be greater than for smooth two-

dimensional distortions and because the general features of the two cases are the same. We have

addressed the question of channel c, )ling elsewhere5" in the context of convective cooling of lightning

channels, and we will discuss complex multipulse turbulent flows in a future paper.
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A. Off Center Pulse Propagation

Our simulations of off center pulse propagation utilize Cartesian coordinates and the configuration

of Fig. 8. which shows a stationary, rectangular grid. Only the upper half' plane appears in the calcula-

tion, since the x-axis forms a symmetr.% axis. The lower boundary is reflecting while the others are

open. The grid consists of 10) by 30 cells of' dimension 6-x and 6j. each ,aring from I mm to 5 mm.

To resolve the channel dynamics sufficiently, we hae embedded a finely zoned region of 50 x 20 cells.

each I mm on a side, in the center of the grid. where the axis of an initial 1.0 cm radius hot chennel

was positioned. With increasing distance from the central 5ine grid. the ', alues of 6x and 8Y transitioned

smoothly from I mm to 5 mm. Near the sides and top of the grid. 6x and hJ were both 5 mm.

Figure 9 shows a plot of p .x. 0, 0) and P(.v. 0. 0) (along the y = 0 plane) at the time the second

pulse is deposited. Bennett profiles. I, I1 - s- S,) for the density and pressure deviation from

ambient were used in these calculations. The dots I Oi on the two curves show the location and spacing

1 mm) of the finite difference grid points in the vicinity of the channel center.

To compute the vortex filament strength approximately we integrate the vorticity over the upper

half plane to obtain

Kt1:) - d dy :(X, ) = dic-V,(X. 0, 0 L 0. t) (65)

where Yi and x.a are the respective limits of the coordinates on our grid. To derive Eq. (65) we

have assumed that v , v, - 0 as x, v - .

Figure 10 shows the results of our calculations of K-(1) for plpo - I. Ro - 0.4, RI = 1.3 cm.

So - 1.0. and X0 - 1.0 cm using tie r.ensity profile of the channel formed by the first pulse and the

pressure profile of the second pulse as shown in Fig. 9. Throughout the simulations, y = cpl C, =

1.35. where cp and c; are the specific heats for air with constant-pressure and constant volume. respec-

tively. After an initial positive transient and a weak relaxation oscillation, the integrated vorticity set-

tles down to a steady state (negative) value. We may compare our formula, Eq. (29), for the ,ortex

filament strength with the residual value shown in Fig. 10. If we assume R,, = 1.0 cm, a - 0.4. b

1.0. and c - 1.0. then fz (A.4. 1.0. 1.0) - -0.23 from Fig. 15. Substituting these numbers into Eq.

(29) with UM, = c, taken as 4 x I0" cm/sec gives K-: (7) = -1.9 x 10' cm2/sec. This number is within

101o of the value of -2.1 x 104 cm-/sec which we obtair from our simulations. The speed of sound c,

should be evaluated using only the density and temperature profiles of the preformed channel at the

location of the center of the second pulse, i.e., ir - -. X6 - -1 cm for the example here. The charac-

teristic time r must be approximately equal to (RI - R)/(c/2) - 45 uis to justify using c, as the
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effective maximum expansion velocity of the heated cylinder. This value is within 25% of the observed

value of < 60 As.

Using Eq. 16) ith x - 0 and our theoretical value for K: gives the maximum flow velocity

expected in the symmetry plane,

SIV: max -'76 mis (66)7r V

when .i = 0.8 cm ifrom the simulation). This value is in good agreement with the Jet velocity of -85

m/s measured in the detailed simulations. The mixing time calculated from Eq. (10) using parameter

%alues from the simulation is about 360 Ms.

In deriving Eq. (25) from Eq. (22) the time derivative term -"" which must integrate to zero

during the expansion, is neglected in favor of the v-vr term, which is always of the same sign and

hence contributes most to the integral over the interv..H (0, 7). A posteriori justification for this

approximation is obtained from Fig. 10, which shows both the general cance!lation of a big transient

component. as assumed in Section IV, and good quantitative agreement with the residual vorticity term.

This means that the amount of vorticity generated depends strongly on the eventual radial displacement

of each fluid .lement but not on the detailed expansion history. The scale of the vorticity is set by an

average expansion velocity only.

Figure II shows a schematic diagram to explain physically how the initial positive vorticity spike

of Fig. 10 occurs. The expanding shock, shown at four different times as a dashed line, travels faster

and drives the post shock flow faster in the low densit. material. We represent the density gradient as

being localized between the two solid semi-circles in an annulus centered at So. The shear resulting

from the differential acceleration of the inner and the outer flui.d corresponds to vorticity of positive

sign which vanishes, as assumed, when differential velocity ceases. The angle between 7 p and 7 P

(assumed normal to the dashed line shock fronts) appears at three locations along the original channel

periphery. The residual vorticity. which corresponds to that appearing in Eqs. (25) and 128), in effect

measures the riet outward expansion of the new channel.

Figures 12 and 13 show the vorticity strength K,.(t) for several values of .',) with the other

remaining variables in our standard case held constant. When the axis of the second pulse fell within

So of the center of the channel (Fig. 12). the transient term appeared to oscillate more rapidl. than the

cases for which the axis of the second pulse fell "outside" the original channel (Fig. 13). The residual

values KI:. were also more nearly equal for the cases in Fig. 12 than for those in Fig. 13. The general
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trend of -. ( - -c) in the five cases of Figs. 12 and 13 follows qualitatively the shape of f:Ia. b, c)

plotted for various cases in Figs. 5, 6, and 7. The uncancelled vorticity, which we called K1. in Section

Ill. decreases from a maximum around .',) - So both as .') - 0 and as ,) becomes large compared to

S). The ratio of K: at V, - 0.2 cm to K-1: at X0 - 0.1 cm is probably not as small as expected from

the curves ./' in Fig. 6 because the sound speed is higher when the second pulse is nearer the center of

the preformed channel. The increasing sound speed partially counterbalances the tendency of fl: to fall

off as Xc, approaches zero.

The major issue in interpreting these calculations using the formulae of Section I revolves

around the choice of L'2/2 for Eq. (28). For estimates in the case of off center pulse propagation, % •

have assumed U is the sound speed of the fluid at the center of the second pulse just before the

second pulse is actually deposited. We have also assumed that the average expansion velocity is U,/2.

Figure 14 compares the effects of initial pulse size on the second pulse, given constant values of

the channel parameters and the overpressure and displacement, X,, of the second pulse. We notice

that the transient term appears to scale in magnitude as R0 while the value of the "residual" vorticity

appears to scale as R2. We may explain the scaling of the residual vorticity in terms of our analytic

"late time" treatment. Instead of using the estimate

(67)

we may calculate U,, from the equation

2(R 1 - R,)) (68)
T

where r is the time of expansion from R0 to RI. In Fig. 14, we see that the extrema in WI, for the

cases of Ro - 0.2 cm and 0.4 cm occur at almost the same values of t and that the relaxation to the

final value of WI: occurs at the same rate for the two cases. Thus.we have (for any consistent definition

of r) the relation

T4 T8, (69)

However we expect that

1

R14  RIB (70)

since

Ro4- - ROB. (71)
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Thus Eq. (68) yields

U 4 U,. (72)
2

Estimates of the form factor indicate that

1'z 1 f : - ( 7 3 )

Using Eqs. (31) and (46)-(51), we find that

I _: (R I - Ro) 1_
- ==- (74)

-a (R 1 8 - R08 )2 4

for the case shown in Fig. 14.

This analysis indicates that c provides only a crude estimate of U,, as the energy deposited

becomes small. From Eq. (69) and the fact that only the preformed channel was identical in cases .4

and B, we conclude that the relaxation time of the transients depends as much on the already existing

density gradients as it does on the expansion of the new channel. The ambient sound speed at X0 -

1.0 cm is about 4 x 10' cm/sec for the standard case and the reduced energy case of Fig. 14. The final

relaxation to the long-time value K: begins at about 40,us for both cases, about the time required for a

sound wave to reach the far side of the original hot channel from the edge of the second pulse (a dis-

tance of 1.8 cm and 1.6 cm for cases A and B respectively).

In Table I and Fig. 15, we present estimates of the form factor fl: for the case So - 1.0 cm, R0

- 0.4 cm, R, - 1.4 cm, Pr./pO = 10 (channel formed by first pulse) and Pr/P-., . 31 (second pulse),

as shown in Figs. 8 and 9. These values correspond to a = 0.4 and b = 1.0. We vary c from 0.2 to

2.0. To estimate the value of U, we used Eqs. (67) and (68). For Eq. (68). we define r to be the

time elapsed between the deposition of the second pulse (t - 0 in Figs. 13 and 14) and the last

extremum in .: before the monotonic relaxation to the residual v'alue. The solid curve is the estimate

from Eq. (30) using a Bennett density profile, Eq. (32), for the original channel. Near c - 1.0, Eq.

(67) appears to provide a better estimate of U,, than does Eq. (68), at least when R0 = 1.0 cm. Better

agreement between the values of fl: derived from simulations and the theory is expected when the

energy deposition is slow and the adiabatic expansion treatment is a better approximation.

Finally, to illustrate the details of the flow resulting from off center - ise propagation, we have

performed a simulation of two sequential. noncollinear pulses without the use of a symmetry plane.

The Cartesian grid consists of 100 x 100 cells with 50 x 50 uniform fine cells in the center. The

dimensions of the remaining cells increase geometrically to move the boundaries far away from the hot
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channel. The first pulse deposits energy in the center at time - 0.0 while the second occurs I ms

later and deposits energy to the right of center (X0 - -0.5 cm). The peak overpressures (Pmx - P )

at the instants when energy deposition occurs are 4.7 atm and 2.4 atm, respectively. Again the pulses

have Bennett profiles. Eq. (32), with a Bennett radius So - 0.5 cm: thus we have c - 1.0. Figure 16

shows density contours and velocity vectors at t - 1.26 ms and density contours at t - 2 ms for the

finely gridded central region. The noncollinearity of the pulses has produced an elongated, hot central

core. In addition, the vector velocity plot clearly shows the enhanced flow between the two vortex

filaments, which are separated by 2v = 1.1 cm or approximately 2 Bennett radii. This flow pulls the

original hot channel (produced by the first pulse) toward the center of the second pulse, as predicted by

our analytic theory. The diagram corresponding to t - 2 ms shows that the center of the original chan-

nel has cooled (has a higher density) as a result of this displacement. We observed identical

phenomena in all similar simulations.

B. Two-Dimensional Distortions

To simulate vorticity generation by smooth two-dimensional distortions, we chose the case of an

elliptical pulse as defined in Fig. 17. The parameters in Fig. 17 are typical of elliptical laser pulses used

in recent studies by Greig et al.1- We note that the pulse is much weaker than those considered in Sub-

section IV.A. and thus expect the residual vorticity to be lower in value. We use a constant value of

y - 1.4 for the ratio of principal specific heats. The Cartesian grid is quite similar to that used in the

previous case. although more cells (150 x 75) are used. The embedded fine grid consists of 100 x 50

cells, and outside that region the x and Y dimensions of the cells increase geometrically. This moves

the boundaries far from the region of interest, permitting the shock to propagate well away from the

hot channel before reaching the boundary. After pressure equilibrium of the hot elliptical channel is

reached, we numerically elimmna.e the radial flows associated with the shock and follow only the

incompressible flows associated with e,,r mechanism for channel cooling. This permits use of longer

time steps (factor of - 100) and reduces the running time significantly.

Figure 18 shows a sequence of density contour diagrams for this calculation. Defining the time

t - 0 to coincide with the instantaneous deposition of energy, we see the shock wave moving out of

the fine grid and leaving a hot channel with an elliptical cross section at t = 50gs. The channel

remains approximately the same for t - I ms and begins to distort noticeably by t - 2 ms under the

influence of the flow shown in Fig. 2. This flow pattern continues to pull the channel outward along

the x-axis as the two vortex filament pairs apparently move apart. Because a relatively coarse grid is

used, these calculations do not resolve smaller scale turbulent structure which has been observed exper-

imentally.12 In addition, perturbations introduced experimentally might alter the interactions among
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vortex filaments and, therefore. the flow pattern shown in our calculations at late times, However, this

simulation should provide a useful treatment of the larger scale flows which determine the rate at which

the ambient atmosphere mixes with the hot channel gas as a result of smooth two-dimensional distor-

tions of a pulse.

To obtain an estimate for the strength of each vortex filament. of which four are present, we

integrate the vorticity over the upper right quadrant {,,re (0. - ). Ye (0. o) to obtain

KYt. ) - dx v,(x. 0. ) - d.v v, (0. V. t) (75)

dx v,(x. 0. t) - dv v, (0. y,
0

where x,;m and vn,, are the positive limits of our grid. In deriving Eq. (75) we have again assumed

that vr, v, - 0 and x. y- oc. Figure 19 shows the evolution of K2 , for the elliptical channel simula-

tion. As we have indicated in Fig. 2. the residual vorticity in the upper right hand quadrant should be

positive, the flow being inward at the ends of the major axis and outward along the minor axis. During

the expansion to pressure equilibrium, however, the acceleration term av/at induces a transient nega-

tive vorticity. By our previous definition, rm,. appears to be <75 1As and the residual vorticity is =2.7

x 102 cm /s. Defining Rt) - act) b(t) where at) and b(t) are the semimajor and semiminor axes

of the ellipse, we have Ro = 0.25 cm. Adiabatic expansion would give us R -: 0.36 and p /po =2

for the hot channel at pressure equilibrium, and from the simulation, we obtain U,, < 3 x 103 cm/s,

which is less than the ambient value of c, by an order of magnitude. From Figs. 2 and 17, we find that

S, = 0.31 and X0 = 0.19. From Eq. (52) and the ensuing discussion, we obtain If 2:1 : 1. We may

now use Eq. (49) to find an estimate of I;2.:I (theory) < 2.3 x 102 cm 2/s. Theory and simulation,

therefore, agree within a factor of 20%.

VI. CONCLUSIONS

This paper represents a first step in analyzing the cooling of hot channels produced by local energy

ueposition in a gaseous medium. We have identified a mechanism which produces sufficient rotational

motion to account for the cooling rates of electric discharge channels produced in the laboratory.1-5 As

the channel expands to pressure equilibrium, a shock is produced, and asymmetries between pressure

and density gradients generate vorticity according to Eq. (1). After pressure equilibration and propaga-

tion of the shock wave well away from the hot channel, vorticity is no longer generated- however.

significant residual vorticity exists. We may represent the resulting flow field in terms of one or more

vortex filament pairs of strength t W, where i - 1. 2. 3 labels the type of asymmetry and a - or O,

labels the vector component of the vorticity. The strength W,, satisfies the equation
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-2 In L /7i (76)

where U,,, is the expansion velocity of the channel boundary when the expansion flux U(t) R () is a

maximum, p- and po are the ambient density and the density at the center of the hot channel just after

energy deposition- and f,,. is a form factor which may be evaluated from the formulae presented in Sec-

tion IV. For asymmetry class I (off center pulse propagation), U, == c, since the flows at the channel

boundary generate most of the vorticity. For smooth distortions of the pulse envelope, which belong to

asymmetry classes 2 and 3, b,,, < c, since the subsonic interior flows generate most of the residual

vorticity. We have also identified another subclass of pulse distortions which arise from energy deposi-

tion iwithin the envelope of a pulse) which does not follow a smooth functional form such as the Ben-

nett profile of Eq. (40). As a simple model we might consider deposition to occur as several simultane-

ous packets of energy within the boundary of the pulse. In a future paper we will analyze and simulate

this situation in detail using the FAST2D code. Accurate numerical simulations of examples of the

two-dimensional asymmetry classes have revealed good agreement with Eq. (76).

With an estimate for T, which appears from simulations to be =S) and Eq. (76) for K,. we may

obtain values for the mixing time scales 7M, from Eqs. (10a-e). For the two-dimensional asymmetry

classes 7mx is the approximate time for doubling of the volume. For three-dimensional distortions, K-14

and K3: are both nonnegligible, and the cumulative effects of the two components must be calculated to

obtain a reasonable doubling time for the channel volume. The values of 7MxZ) and TmixI9) given by

Eqs. (10a) and (lOe) do, however, provide a useful estimate of the importance of each component rela-

tive to the other and to other types of asymmetry.
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Table I - %'alLes of i,. from numerical simulations The displacement of the axes of the hot channel
and the latest pulse t. v- s,, aries from 0.2-2.0. The table also compares two methods of computing
.,. The sound speed is computed at the position of the pulse just prior to energy deposition.

C Um CSlX°) -flZICS) Urm (eq.68) - f1 .(eq.68) - z (r)

0.2 8.2 X 104cm 0.10 8.0 X 104cm 0.10 1.9 x 104cm 2

sec sec sec

0.5 5.2 x 104  0.18 6.3 X 104  0.14 2.1 x 104

1.0 3.9 x 104  0.23 5.9 x 104  0.15 2.1 x 104

1.5 3.6 x 104  0.19 4.2 x 104 0.17 1.6 x 104

2.0 3.5 x 104  0.15 3.2 x 104  0.16 1.2 x 104
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lig 16 a) Densit% contours and 1b) ,elocitN %ectors, at a time 1 1 26 ms and 10i densit% conlours at t 2 00 mn for 1%%0
sequential ri-ncollincar pulses. The first pulse occurred at t - 1) 0ms in the :enter of the gtrid. and the ;ccond pulse occurred at

t ) ms with a displacement of 0.5 en, to the (reader'sI right of center The figures :orrespond to the tine grid The dcnsity
contoiurs jr% from 3 1) x 10-a (innermosti toi 1.1 x 10-- gm/cm3 ioutermost). In (h . \he has e plotted a %oiocit% ector at
es err other c ell center:* thus the centers of the two % -irtes filarnents are somewhat indistinct. The major flow% occurs between the
filaments and the direction of he floiw is from the :.,nter )I* the earlier pulse to the center of the later pulse.
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r = 1 ) ms with a displacement ofl 1) 5 c:m to the (reader's) right ,ot*center The figures correspond to the fine grid. The densit.

contours %ary from 1 1) x 1()
-

' 'innermost) to I I x 10-" gin/er
3  

outermost) In (b). we ha,,e plotted a eiocity %ector at '.

everv other cell c:enter: thus the centers of the two vortex filaments are somewhat indistinct. The matior flo%, occur., between the

filaments and the direction of" the flow is from the c:enter of the e:arlier pulse to the center of the later pulse.
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Fig1 lb ai Density contours and 1b) %locits ectors at a time 1 1.10 mns and 4c) density contours at 1 2 0 mns for vi

icciuentiai noncoilinear pulses The tiri pulse occurred at t - 0.0 ms in the center of the grid. And the second pulse occ:urred at
i - 1 ms with a displacement of 0 5 cm to the rcader'si right of center. The figures correspond to the tine grid The Jcnsi

:ontours s-ary from 3 1) x 10-1 innermost1 to IIx 10-3 em/cm3 (outermost, In (b). we hase plotted a \elocit% %ector at
ecr. other cell center thus the centers of the two sortex ildments are somewhat indistinct. The Ttaior flow% occur,, between the
tilaments and the direction of the floiw is from the center of' the earlier pulse to the center of' the later pulse.
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torm grid of 100i x 50 line cells The dimensions or the remaining :ells then increase geometrically with distance front the pukse
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Fig. 18 -Results of a computer simulation of the time deselopment of' a laser pulse hasing. smooth elliptical distortion.
The simulation used the initial conditions described in Fig. 17. The density contour diagranms show~n here correspond to the
following time intersals elapsed from the point of' instantaneous energy deposition. ji) 36 ju,. (hi -5 s. c) 2 0 mis. id) 4.0
m is. and (e) 6 4 ms The six eqtually spaced contour salues range from '.4 x 10-' g/cm 'contour I I to 1 26 x 10- _v cm-

contur b th conoursalus icrease w~ith increasing %ertical displacement from the center of the channel. In (di. the
* sihock appears just inside the fine grid Diagram 'hi shows contours 1-3 and the others base only contours 2-5. indicating

that the channel gas has cooled somewhat. The flattened tops of the contours result from clipptng h% the flu\-corrected
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Fig. IS Results of' a coptrsimulation ol" the time de~elopment o- a laser pulse has ing smooth elliptical disto1rrtonn
The simulation used the initial conditions described in Fig, I-, The densit ' contour diagrams sho~kn here correspond to the
followifg time intersais elapsed from the point of instantaneous energy deposition. (ai Iii ps. hbi 5 ps. Ic) 2.1) ins. 'd) 41)
Ms. and lei o4 ms. The six euuall% spaced contour values range frorn 74 x 1)-' L,,cm' 'contour Iitoi 1.26 X It)- cm-'
contour 01. the contour %Alues increase w~ith increatsink: sertical displacement from the center -)I the channei In (a,. the

shock appears just inside the tine grid Diagram i shoAs co)ntours I-5 and the others hase onl contours 2->. indicating
that the channel gas has cooled some~hai. The tlattened top-, -it the contours result from c:ipping i the tiux-corrected
transport algorithm.

Fig. IS - Results of' a computer simulation ot' the time deselopment ot a lascr nuisc ha in. imoomh Illiptiit distortion
The simulation used the initial conditions described in Fig I' The densiio contour diag~rams 'hoA n here correspoind to the
following time intervals elanised from the point ofI instantaneous energ> deposition ia i 316 M, hi u 2 i) Mns. li 4 0
ins. and 4e) 6.4 Mns. The six equall *k spaced contour %alues range from 4 Is - g 'm ,ntour i rI oi c, cm'
contour bl: the contour %alues increase with increasingz %ertical displacement iron, tn cnt.,, ! h., hannel In 11. the

shock appears just inside the line grid. Diagram ihi sho~s contours; 1-4 and the otherN hasc n i ointis :--t indica~ting
that the channel gas has cooled somewhat. The flattened tops 4f the contours, result t7,m c!irrink! 1' he !lus.-orcited
transport algorithm.
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34

Fit! I S Results <if a :omputer simulation of the time de% elopment of' a laser pulse ha% ing smooth elliptical distortion
The ismulation used the initial conditions described in Fig. I-The deroat contour diagrams sho% n here corre-,pond to) the
flovng time intier~ is -lapsed from the point of instantaneous enere de position Ii a)36 jus, (b, - 1,s. it: 2.0 m,. Id J 4 )
m,. aind lei 0 4 ms The six equailh spaced con tour salues ran ge tr- XO 10'.cm (contour I I to 1 26 X I()- e CM:
lcontour isi. zhe contour ialue.s increase isith increasiing sertical displacement from the center of the channel In 'a'. the
shock appears just inside the tne grid. Diagram lbi shows contours 1-5 and the others haie only contours 2-4. indicating
that the channel gas rias cooled somes~ha The flattened top% Of the contours result from clipping b) the flux-corrected
t:ansport algorithm

5

4

3 2
Fig. 18 - Result-, of a computer simulation of the time deselopment of a laser pukse basing smooth ciliptical dlistortion.
The sim~ulatton used the inittal conditions described in Fig. I - The densit ciinbour diagrams shown here correspond to) the
following time inters.als elapsed from the point of instantaneous energy' deposition at) ',~ .is ,4)-5 p s. -ci 2 0I ms. ldi 4 1)
ins. and lei 6.0 ms. The six etqua8) spaced contour values range frim "4 x 1)" g, cm! lcontour I I to I 2o x ill- g, cm
contour 6). the contour %aiues increase %iith increasing %erttcal displa~ement from the center of the channel In la . the

-shock appears just inside the fine grid Diagram I b) shol4s contour, 1-; and the others hae "n) contours 2-4. ndt)Cjtinr
that the channel gas has cooled somewhat. The flattened tops of the contours result from clippn tebucrrtc
v~ insport algorithm.
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Fig l19 - The integrdied %cirticit W- fo the elliptical pulse simulation %dries as shown here. with
the anticipated transient hehauior and a residual positi~e %ilue
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